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INTRODUCTION

In the past, the surface of mica has been characterized by

Low Energy Electron Diffraction (LEED) and Auger Electron Spectro-

metry (AES)1'2'3 and more recently by a static SIMS (SSIMS)4

method. These papers have dealt with surface characterization

after cleaning and cleaving procedures. The recent paper on

static SIMS characterization took advantage of the great sensitiv-

ity of SIMS and used the detailed information about molecular cluster

species present on the surface, and their relation to the sources

of surface contamination. The purpose of the present investiga-

tion is surface characterization of mica family substrates for

vacuum deposition of thin films. These thin films will then be

used to study diffusion under various conditions as a part of a

larger study to compare the diffusion found in polycrystalline

materials primarily by grain boundary diffusion with that found

in diffusion through single crystal materials, such as alkali

halides. This diffusion, particularly of alkali elements

sodium and potassium has important technological implications

in numerous fields, such as adhesive bonding, microencapsulation,

and thin film technology.
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EXPERIMENTAL

The characterization methods used in this work are the com-

bined ISS/SIMS and AES/SIMS as seen in Figures 1 and 2. The same

primary ion beam is used to probe the surface in both ISS and

SIMS. The scattered ion energy spectrum is produced by the electro-

static spectrometer (900 scattering) and is representative of

the elements occupying the first atomic layer at the surface.
5

The primary ion beam, which in this case has an energy 100-2500

eV, also sputters away surface atoms which are ionized and detect-
6

ed by the quadrupole mass analyzer. The system used here is the

commercial ion scattering spectrometer Model 520 manufactured by

3M Co., St. Paul, MN) to which a modified (UTI (Uthe Technology

International, Sunnyvale, CA) Model 100C quadrupole mass filter

has been added to allow positive SIMS. A simple three-element

cylindrical energy analyzer was added to the mass filter. The

ISS instrument was updated during this work with a cylindrical

mirror analyzer (CMA) to give higher intensities and scattering

at 1380. The spectra obtained with the CMA are marked on the

figures. The experimental arrangement using the CMA is seen in

Figure 3.

AES data was obtained with a Model 540 Thin Film Analyzer

(Physical Electronics, Inc., Eden Prairie, MN) equipped with a

simple SIMS system similar to that used with ISS.

Since mica is such a good insulator, it acquires a charge

upon bombardment with either electrons or with positive ions.

Electron or positive ion bombardment causes the ejection of

secondary electrons from the surface, causing a build-up of a

positive charge on the surface. Czanderna and co-workers 7 have

shown this charge build-up can exceed hundreds of volts in cer-

tain cases. The effect of this charge build-up on ion scattering

spectra is to shift the ion scattering peaks from the energy

ratio at which they should occur. Large charge build-up may

result in virtually complete reflection of the primary ions and

2



the spectrum disappears. Likewise the acquisition of positive

charge on the specimen causes the SIMS and AES data to rapidly

deteriorate. In order to compensate for this positive build-up,

low energy electrons are sprayed on the surface to equalize the

charge as shown by Muller. 8 The low energy electrons are increased

until the ion scattering peaks are returned to the correct point

which corresponds to a voltage on the sample of zero volts.

Except where noted, all experiments shown here are using high-

purity ASTM V-3 African ruby mica (muscovite) obtained from

Asheville Schoonmaker Mica Co., Newport News, VA.

3
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RESULTS AND DISCUSSION

Mica was chosen as substrate material for this work because

of its ready availability in single crystal form and its thermal

stability (up to about 700 C).1 It can be reproducibly cleaved

under various atmospheres to produce extremely smooth surfaces.

Mica is a sheet silicate and the sheets are linked by single

layers of potassium ions as shown in Figure 4. Cleavage takes

place along the potassium layer as shown, and half of the po-

tassium ions are shared by each face in a random distribution.

The equal distribution of potassium on each face of a cleaved

specimen is shown in Figures 5 and 6. In this experiment, a

very thin sheet was cleaved in air from a thicker block of mica.

The thin cleaved section was subjected to ISS and SIMS analysis

and gave the data shown in Figure 5. Experimental conditions

were kept constant for the data shown in Figure 6. Virtually

identical data is obtained from the two cleaved specimens. The

original as received surface, however, is much different, showing

in Figure 7 approximately half as much potassium on the surface

compared to a freshly cleaved surface. Poppa and Elliott have

shown the depletion of potassium upon heating. Perhaps there is

a very slow depletion which takes place under ambient conditions,

even when the surface is not heated above room temperature. In

addition to the difference of potassium shown in the ion scatter-

ing spectra there are some differences observed in the positive

SIMS data also. Because of the uncertain and rapidly changing

ion yields with oxidation and other factors, the absolute peak

heights may not be meaningful in positive SIMS. However, as can

be seen, there are changes in the ratios of the major peaks and

in addition, there is a definite change in the molecular peaks in

the region of mass 43-45 where A10 + and other unidentified mole-

cular peaks exist.

Freshly cleaved surfaces were boiled in deionized H 20 for

30 minutes. ISS and SIMS spectra are shown from this surface in

Figure 8. No apparent change is seen in the ion scattering spec-

trum, but considerable differences are seen in the positive SIMS

data. The appearance of appreciable amounts of magnesium may

have come from magnesium leached from the mica and substituted

4



octahedrally back onto the surface for the aluminum or this may

represent a minute quantity of magnesium that was originally

present in the deionized water. Also, there is an increase in
+ 41 +the molecular species A1O in comparison with the 41 peak as

shown in the positive SIMS spectrum.

A freshly cleaved surface was also held for 30 minutes in one
molar sodium hydroxide solution. The ion scattering positive
SIMS data are shown in Figure 9. Again there is little obvious

change in the ion scattering spectrum. The positive SIMS spec-

trum, however, shows that apparently a large amount of sodium

has substituted on the surface with the potassium originally

present. Immersion in the sodium hydroxide solution does not

appear to change the abundance of the A1O+ molecular species.

Figure 10 shows the ISS/SIMS data for a freshly cleaved

surface of an impure mottled inhomogeneous mica of unknown origin.

The ion scattering spectrum is less distinct, but is the general

shape as that shown for the earlier freshly cleaved surfaces from

pure African mica. Likewise, the positive SIMS surface are very

similar and surprisingly very few extra peaks are observed. In

another spectrum in a different spot in a darkened area, appre-

ciable amounts of iron were observed.

Ion Scattering Spectra of muscovite and two other mica

family members, biotite and phlogopite are shown in Figures 11-13.

These spectra were obtained using the CMA and the apparatus

shown in Figure 3. The spectrum for muscovite is similar, of

course, to the spectra obtained at 900 but there is better dis-

persion and the background is lower. Spectra of biotite (Figure

12) and phlogopite are also similar, but show the substitution

of other ions in the sheet silicate structure, namely fluorine.

The ratios of certain elements such as magnesium to iron determine

the exact nomenclature for the mineral9 . The occurrence of im-

purity and substitutional ions is especially obvious in SIMS

spectra. A summary of ions observed in + SIMS for muscovite,

biotite and phlogopite is seen in Table I along with a listing of

ion species observed in - SIMS.
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AES Data are shown in Figures 14 through 21 for African

mica, Canadian muscovite, biotite and phlogopite. Especially

interesting is the difference in spectra between original surfaces

and "equilibrium sputtered" surfaces. "Equilibrium sputtering"
represents sputtering until AES data stabilize and no further

changes are seen with increasing sputtering. It is recognized

that this is a damaged surface which does not necessarily rep-
resent true composition, but it is a surface which may be easily

reproduced from laboratory to laboratory or from day to day in the

same laboratory.

Elemental sputter profiles, such as those in Figure 19, can

provide depth distribution information of sputtering rate cali-

brations are made. In the case of phlogopite, the profiles did

not reflect the expected repetitive K rich layers. This was

probably due to a combination of electron and ion beam effects
10-11

which result in decreased depth resolution.

6



SUMMARY AND CONCLUSIONS

These results indicate the powerful potential of the com-

bination of modern methods of surface analysis to characterize
freshly cleaved surfaces of mica. The excellent sensitivity and

adjacent atom resolution of positive SIMS and AES and the first
surface sensitivity of ion scattering make these techniques ideal

for studying such surfaces. These same characteristics will make

these techniques very valuable for studying diffusion from a mica

surface through thin films. The insulating qualities of mica
make it more difficult to obtain spectrochemical data but these

difficulties may be overcome. It remains to be seen whether the

heating of the electron beam in AES negate the technique for

diffusion studies on highly mobile ions.
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TABLE I

COMPARISON OF POSITIVE AND NEGATIVE

SIMS DATA FOR MICA FAMILY MINERALS

+ SIMS Strong Medium Weak

Muscolite K+  Na + , Al CHn+ , Si+ , A1O

Biotite K F, Na + CHn, Si Fe
Mg+, Al

Phlogopite K4  Na CHn, Mg, Si
Al+

F 
+

- SIMS

Muscovite 0 none amu 24, 26, 28, 32

(very strong) amu 35, 37 (Cl

43 (AO) 59 (A102
60 (SiO2 )

8I
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4 He
1380

1500 V

MUSCOVITE

0

Al, Si

K

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E/E 0

Figure 11. ISS Data Using the CMA for muscovite.
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1380 PH LOGOPITE
1500V 0

F NalMg
AI,Si

K

L
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Figure 13. ISS Data using the CHA for Phiogopite.
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Figure 19. Distribution of Elements During He + Sputtering
of Phiogopite from AES Data.
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